4.7 Article

Synergetic effect of niobium and molybdenum on abrasion resistance of high chromium cast irons

Journal

WEAR
Volume 376, Issue -, Pages 983-992

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.wear.2017.01.103

Keywords

Abrasion; high chromium cast iron; niobium addition; molybdenum addition

Ask authors/readers for more resources

This research presents the systematic study of the effects of niobium and molybdenum in high chromium cast irons (HCCI). Four 18%Cr/2.7%C alloys were melted: a base alloy, an alloy containing 1% Mo (free-Nb), an alloy containing 1% Nb (free-Mo) and a fourth alloy containing 1% Nb and 1% Mo. In general, Nb and Mo additions slightly increased (similar to 3% to 10%) the Vickers hardness and the microhardness of the matrix. Regarding niobium carbides (NbC), nanohardness was measured. The fourth alloy presented harder (similar to 13%) NbC than the Mo-free alloy. Abrasion tests using a Dry Rubber Wheel Abrasion Tester (DRWAT) were carried out using different severity levels of wear by varying the normal load and the size of the abrasive grains. For more severe conditions all alloys presented a similar abrasive wear response while micro-cutting as the wear micromechanism dominated. On the other hand, for a less severe test condition, the fourth alloy (containing Nb and Mo) presented a higher abrasion resistance (16%) than the base alloy and the wear predominantly occurred in the matrix. Concluding that, for low severity conditions (mild wear), even rather small amounts of Nb and Mo (in combination), can lead to significant gains in abrasion resistance of HCCI; representing a significant improvement to the cost-benefit ratio for industrial applications. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available