4.5 Article

Removal of potentially toxic elements from aqueous solutions and industrial wastewater using activated carbon

Journal

WATER SCIENCE AND TECHNOLOGY
Volume 75, Issue 11, Pages 2571-2579

Publisher

IWA PUBLISHING
DOI: 10.2166/wst.2017.130

Keywords

activated carbon; adsorptive removal; aqueous solution; industrial wastewater; potentially toxic elements

Funding

  1. Higher Education Commission (HEC) Islamabad, Pakistan
  2. University of Peshawar, Pakistan

Ask authors/readers for more resources

Water contamination with potentially toxic elements (PTEs) has become one of the key issues in recent years that threatens human health and ecological systems. The present study is aimed at removing PTEs like cadmium (Cd), chromium (Cr), copper (Cu) and lead (Pb) from aqueous solutions and industrial wastewater using activated carbon (AC) as an adsorbent through different batch and column experiments. Results demonstrated that the removal of PTEs from aqueous solutions was highly pH dependent, except for Cr, and the maximum removal (> 78%) was recorded at pH 6.0. However, maximum Cr removal (82.8%) was observed at pH 3.0. The adsorption reached equilibrium after 60 min with 2 g of adsorbent. Coefficient (R-2) values suggested by the Langmuir isotherm model were 0.97, 0.96, 0.93 and 0.95 for Cd, Cr, Cu and Pb, respectively, indicating the fit to this model. In column experiments, the maximum removal of PTEs was observed at an adsorbent bed height of 20 cm with the optimal flow rate of 3.56 mL/min. Furthermore, PTEs removal by AC was observed in the order of Cu> Cd> Pb > Cr. Findings from this study suggest that AC could be used as a promising adsorbent for simultaneously removing several PTEs from wastewaters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available