4.7 Article

Stochastic estimation of hydraulic transmissivity fields using flow connectivity indicator data

Journal

WATER RESOURCES RESEARCH
Volume 53, Issue 1, Pages 602-618

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1002/2015WR018507

Keywords

flow connectivity indicator; Cooper-Jacob method; transmissivity; parameter estimation; anisotropy; cokriging

Funding

  1. ENRESA (Empresa Nacional de Residuos, S.A.)
  2. ICREA Academia Program

Ask authors/readers for more resources

Most methods for hydraulic test interpretation rely on a number of simplified assumptions regarding the homogeneity and isotropy of the underlying porous media. This way, the actual heterogeneity of any natural parameter, such as transmissivity ( T), is transferred to the corresponding estimates in a way heavily dependent on the interpretation method used. An example is a long-term pumping test interpreted by means of the Cooper-Jacob method, which implicitly assumes a homogeneous isotropic confined aquifer. The estimates obtained from this method are not local values, but still have a clear physical meaning; the estimated T represents a regional-scale effective value, while the log-ratio of the normalized estimated storage coefficient, indicated by , is an indicator of flow connectivity, representative of the scale given by the distance between the pumping and the observation wells. In this work we propose a methodology to use , together with sampled local measurements of transmissivity at selected points, to map the expected value of local T values using a technique based on cokriging. Since the interpolation involves two variables measured at different support scales, a critical point is the estimation of the covariance and crosscovariance matrices. The method is applied to a synthetic field displaying statistical anisotropy, showing that the inclusion of connectivity indicators in the estimation method provide maps that effectively display preferential flow pathways, with direct consequences in solute transport.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available