4.8 Article

Uptake and elimination kinetics of perfluoroalkyl substances in submerged and free-floating aquatic macrophytes: Results of mesocosm experiments with Echinodorus horemanii and Eichhornia crassipes

Journal

WATER RESEARCH
Volume 117, Issue -, Pages 167-174

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2017.04.003

Keywords

Bioaccumulation kinetics; Bioconcentration factors; Physical-chemical properties; Phytoremediation; Translocation factors

Funding

  1. Singapore Ministry of Education (MOE) Academic Research Fund (AcRF-Tier 1) grant

Ask authors/readers for more resources

Studies investigating the bioaccumulation behavior of perfluoroalkyl substances (PFASs) in aquatic macrophytes are limited. The present study involved controlled mesocosm experiments to assess uptake and elimination rate constants (k(u), k(e)), bioconcentration factors (BCFs) and translocation factors (TB) of several perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkane sulfonic acids (PFSAs) in two aquatic plant species, including one submerged species (Echinodorus horemanii) and one free-floating species (Eichhornia crassipes). The results indicated all PFASs were readily accumulated in these aquatic macrophytes. k(u) and BCFs increased with increasing perfluoroalkyl chain length. For PFCAs and PFSAs with identical perfluoroalkyl chain length, the corresponding PFSA exhibited higher bioaccumulation potential. On a whole-plant basis, the bioaccumulation potential of PFASs in submerged and free-floating macrophytes were comparable, indicating sorption to plant biomass is similar in the different species. Conversely, when considering accumulation in foliage, BCFs in the free-floating macrophyte were substantially lower compared to submerged species, especially for longer-chain PFASs. Compounds with shorter perfluoroalkyl chain length (PFBS, PFPeA and PFHxA) exhibited preferential translocation to leaf tissue (TFs >1). BCFs exhibited a sigmoidal relationship with pefluoroalkyl chain length, membrane water distribution coefficients (D-mw), protein-water distribution coefficients (D-pw) and organic-water partition coefficients (K-oc). For these trends, maximum BCF values were exhibited by long-chain PFCAs, with a log D-mw, log D-pw and log K-oc of 6.47, 5.72 and 5.04, respectively. These findings are useful for future design and implementation of phytoremediation systems, as well for future develop of mechanistic models for predicting the environmental fate and distribution of these contaminants of concern. (C) 2017 Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available