4.8 Article

Highly efficient inactivation of bacteria found in drinking water using chitosan-bentonite composites: Modelling and breakthrough curve analysis

Journal

WATER RESEARCH
Volume 111, Issue -, Pages 213-223

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2017.01.003

Keywords

Chitosan-bentonite composites; Fixed bed column; Escherichia coli; Bacteria inactivation; Disinfection models; Breakthrough analysis

Funding

  1. Department of Science and Technology [HGERA8X]
  2. Council for Scientific and Industrial Research, South Africa [HGER20S]

Ask authors/readers for more resources

Disinfection of bacterially-contaminated drinking water requires a robust and effective technique and can be achieved by using an appropriate disinfectant material. The advanced use of nanomaterials is observed as an alternative and effective way for the disinfection process and water treatment as a whole. Hence, the inactivation of Escherichia coli (E. coli) using chitosan-Bentonite (Cts-Bent) composites was studied in a fixed bed column. Cts-Bent composites were synthesized using in situ cross-linking method using Bent-supported silver and zinc oxide nanoparticles. These composites were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. The effect of the composite bed mass, initial concentration of bacteria, and flow rate on the bacterial inactivation was investigated. The characterization results revealed that the composites were successfully prepared and confirmed the presence of both silver and zinc oxide nano particles in the chitosan matrix. The growth curves of E. coli were expressed as breakthrough curves, based on the logistic, Gompertz, and Boltzmann models. The breakthrough time and processed volume of treated water at breakthrough were used as performance indicators, which revealed that the composites performed best at low bacterial concentration and flow rate and with substantial bed mass. The chitosan composites were found to be highly effective, which was demonstrated when no bacteria were observed in the effluent sample within the first 27 h of analysing river water. All the models were suitable for adequately describing and reproducing the experimental data with a sigmoidal pattern. Therefore, the prepared composite is showing potential to work as a disinfectant and provide an alternative solution for water disinfection; hence this study should propel further research of the same or similar materials. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available