4.7 Article

Control of internal phosphorus loading in eutrophic lakes using lanthanum-modified zeolite

Journal

CHEMICAL ENGINEERING JOURNAL
Volume 327, Issue -, Pages 505-513

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2017.06.111

Keywords

Eutrophication; Fractionation; Lanthanum; Phosphorus; Sediment; Zeolite

Funding

  1. National Key Project for Water Pollution Control [2012ZX07105002-03]

Ask authors/readers for more resources

Tackling the release of phosphorus (P) from sediments remains a challenge to mitigating the eutrophication of lakes. The current study investigated the efficacy of lanthanum-modified zeolite (LMZ), which was developed from coal fly ash via a one-pot process, to reduce P levels in a simulated water-sediment system. LMZ was dosed to bind releasable P fractions (i.e., labile P, reductant-soluble P, NaOH-P, and organic P fractions) in sediment of shallow lakes. LMZ treatment was found to be effective at decreasing the P concentration in water overlying sediment. On average, total P and soluble-reactive P were reduced by 81.1% and 86.9% in a 28-day sediment core incubation experiment and by 57.1% and 72.8% in a 212-day mesocosm experiment, respectively. LMZ decreased P release from sediment under high pH value (similar to 10.0) and anoxic conditions by 45.8% and 87.4% for total P and by 52.9% and 94.0% for soluble-reactive P, respectively. Adding LMZ induced a change of P in sediment from releasable P fractions to refractory P forms. Although aquatic parameters interfered with P binding, increasing the LMZ dosage enhanced the effect of LMZ. The control of internal phosphorus loading by LMZ was explained as follows: (i) capture of P from water; (ii) inhibition of P release from sediment; (iii) enhancement of P retention capacity of sediment; and (iv) inactivation of sediment P via the formation of stable P forms. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available