4.4 Article

Liraglutide mitigates TNF- induced pro-atherogenic changes and microvesicle release in HUVEC from diabetic women

Journal

DIABETES-METABOLISM RESEARCH AND REVIEWS
Volume 33, Issue 8, Pages -

Publisher

WILEY
DOI: 10.1002/dmrr.2925

Keywords

diabetes mellitus; endothelial dysfunction; GLP-1 receptor agonists

Funding

  1. Ministry of University and Research Government grant [20123BJ89E_003]
  2. Novo Nordisk

Ask authors/readers for more resources

BackgroundTo evaluate whether exposure to GLP-1 receptor agonist Liraglutide could modulate pro-atherogenic alterations previously observed in endothelial cells obtained by women affected by gestational diabetes (GD), thus exposed in vivo to hyperglycemia, oxidative stress, and inflammation and to evaluate endothelial microvesicle (EMV) release, a new reliable biomarker of vascular stress/damage. MethodsWe studied Liraglutide effects and its plausible molecular mechanisms on monocyte cell adhesion and adhesion molecule expression and membrane exposure in control (C-) human umbilical vein endothelial cells (HUVEC) as well as in HUVEC of women affected by GD exposed in vitro to TNF-. In the same model, we also investigated Liraglutide effects on EMV release. ResultsIn response to TNF-, endothelial monocyte adhesion and VCAM-1 and ICAM-1 expression and exposure on plasma membrane was greater in GD-HUVEC than C-HUVEC. This was the case also for EMV release. In GD-HUVEC, Liraglutide exposure significantly reduced TNF- induced endothelial monocyte adhesion as well as VCAM-1 and ICAM-1 expression and exposure on plasma membrane. In the same cells, Liraglutide exposure also reduced MAPK/NF-kB activation, peroxynitrite levels, and EMV release. ConclusionsTNF- induced pro-atherogenic alterations are amplified in endothelial cells chronically exposed to hyperglycemia in vivo. Liraglutide mitigates TNF- effects and reduces cell stress/damage indicators, such as endothelial microvesicle (EMV) release. These results foster the notion that Liraglutide could exert a protective effect against hyperglycemia and inflammation triggered endothelial dysfunction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available