4.5 Review

Modulation of the DNA damage response during the life cycle of human papillomaviruses

Journal

VIRUS RESEARCH
Volume 231, Issue -, Pages 41-49

Publisher

ELSEVIER
DOI: 10.1016/j.virusres.2016.11.006

Keywords

Papillomavirus; DNA damage; Viral replication; Life cycle

Categories

Funding

  1. National Institutes of Health [1R01CA181581]
  2. American Cancer Society [A14-0113]

Ask authors/readers for more resources

Human papillomavirus (HPV) is the most common sexually transmitted viral infection. Infection with certain types of HPV pose a major public health risk as these types are associated with multiple human cancers, including cervical cancer, other anogenital malignancies and an increasing number of head and neck cancers. The HPV life cycle is closely tied to host cell differentiation with late viral events such as structural gene expression and viral genome amplification taking place in the upper layers of the stratified epithelium. The DNA damage response (DDR) is an elaborate signaling network of proteins that regulate the fidelity of replication by detecting, signaling and repairing DNA lesions. ATM and ATR are two kinases that are major regulators of DNA damage detection and repair. A multitude of studies indicate that activation of the ATM (Ataxia telangiectasia mutated) and ATR (Ataxia telangiectasia and Rad3-related) pathways are critical for HPV to productively replicate. This review outlines how HPV interfaces with the ATM- and ATR-dependent DNA damage responses throughout the viral life cycle to create an environment supportive of viral replication and how activation of these pathways could impact genomic stability. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available