4.5 Article

Recombinant influenza H7 hemagglutinin containing CFLLC minidomain in the transmembrane domain showed enhanced cross-protection in mice

Journal

VIRUS RESEARCH
Volume 242, Issue -, Pages 16-23

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.virusres.2017.09.008

Keywords

Influenza A virus; H7N9; Hemagglutinin; Transmembrane domain; Trimerization; Cross-protection

Categories

Funding

  1. Guangzhou Science and Technology Plan [201504010025]
  2. Science and Technology Plan of Guangdong [2013B020224003]
  3. Guangdong Natural Science Foundation [2015A030313095]
  4. H7N9 Avian Influenza Joint Research [2014-1046]

Ask authors/readers for more resources

Since February 2013, H7N9 influenza virus, causing human infections with high mortality in China, has been a potential pandemic threat. The H7N9 viruses are found to diverge into distinct genotypes as other influenza viruses; thus a vaccine that can provide sufficient cross-protection against different genotypes of H7N9 viruses is urgently needed. Our previous studies demonstrated that the HA-based structural design approach by introducing a CFLLC minidomain into transmembrane domain (TM) of H1, H5 or H9 hemagglutinin (HA) proteins by replacing with H3 subtype HA TM could enhance their cross-protection. In this study, we used Sf9 insect cell expression system to express recombinant H7 HA proteins H7-53WT, in which HA gene was derived from H7N9-53 strain, and H7-53TM containing CFLLC minidomian by replacing its TM domain with H3 HA TM. We investigated whether introduction of CFLLC minidomain into H7 HA (H7-53TM) could increase its cross-reactivity and cross-protection against different genotypes of H7N9 viruses. The results showed that the H7-53TM either with or without squalene adjuvant induced increased HI antibodies, serum IgG antibodies, and IFN-gamma production to a panel of 7 H7N9 viruses in mice. Vaccinated animals with H7-53TM alone showed complete protection against challenge with heterologous H7N9-MCX strain, while H7-53WT alone showed incomplete protection (80%). Furthermore, mice vaccinated with H7-53TM HA showed less body weight loss and less pulmonary lesions and inflammation after challenge with homologous or heterologous H7N9 viruses, comparing to H7-53WT. In summary, this study presents a better subunit vaccine candidate (H7-53TM) against potential H7N9 pandemic.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available