4.7 Article

Development of neutron imaging quantitative data treatment to assess conservation products in cultural heritage

Journal

ANALYTICAL AND BIOANALYTICAL CHEMISTRY
Volume 409, Issue 26, Pages 6133-6139

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00216-017-0550-0

Keywords

Neutron imaging; Ammonium oxalate; Cultural heritage; Treatment; Noto stone

Ask authors/readers for more resources

Distribution, penetration depth and amount of new mineralogical phases formed after the interaction between an inorganic treatment and a matrix are key factors for the evaluation of the conservation treatment behaviour. Nowadays, the conventional analytical methodologies, such as vibrational spectroscopies, scanning electron microscopy and X-ray diffraction, provide only qualitative and spot information. Here, we report, for the first time, the proof of concept of a methodology based on neutron imaging able to achieve quantitative data useful to assess the formation of calcium oxalate in a porous carbonatic stone treated with ammonium oxalate. Starting from the neutron attenuation coefficient of Noto stone-treated specimens, the concentrations of newly formed calcium oxalate and the diffusion coefficient have been calculated for both sound and decayed substrates. These outcomes have been also used for a comparative study between different treatment modalities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available