4.7 Article

Nonlinear vibration of functionally graded graphene-reinforced composite laminated cylindrical shells in thermal environments

Journal

COMPOSITE STRUCTURES
Volume 182, Issue -, Pages 447-456

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compstruct.2017.09.010

Keywords

Functionally graded materials; Nanocomposites; Nonlinear vibration; Cylindrical shell; Temperature-dependent properties

Funding

  1. National Natural Science Foundation of China [51779138]
  2. Australian Research Council [DP140104156]

Ask authors/readers for more resources

This paper presents an investigation on the nonlinear vibration behavior of graphene-reinforced composite (GRC) laminated cylindrical shells in thermal environments. The material properties of the GRCs are temperature-dependent and the functionally graded (FG) materials concept is adopted which allows a piece-wise variation of the volume fraction of graphene reinforcement in the thickness direction of the shell. An extended Halpin-Tsaia micromechanical model is employed to estimate the GRC material properties. The motion equations for the nonlinear vibration of FG-GRC laminated cylindrical shells are based on the Reddy's third order shear deformation theory and the von Karman-type kinematic nonlinearity, and the effects of thermal conditions are included. The nonlinear vibration solutions for the FG-GRC laminated cylindrical shells can be obtained by applying a two-step perturbation technique. The results reveal that the nonlinear vibration characteristics of the shells are significantly influenced by the GRC material property gradient, the stacking sequence of the plies, the temperature variation, the shell geometric parameter and the shell end conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available