4.7 Article

Combining metabolic and process engineering strategies to improve recombinant glycoprotein production and quality

Journal

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
Volume 101, Issue 21, Pages 7837-7851

Publisher

SPRINGER
DOI: 10.1007/s00253-017-8513-0

Keywords

HEK293 cells; PYC2-overexpression; Protein sialylation; Nutrient substitution

Funding

  1. Fonds de Recherche du Quebec-Nature et Technologies (FRQNT) [175187]
  2. Wallonia-Brussels International (WBI)

Ask authors/readers for more resources

Increasing recombinant protein production while ensuring a high and consistent protein quality remains a challenge in mammalian cell culture process development. In this work, we combined a nutrient substitution approach with a metabolic engineering strategy that improves glucose utilization efficiency. This combination allowed us to tackle both lactate and ammonia accumulation and investigate on potential synergistic effects on protein production and quality. To this end, HEK293 cells overexpressing the pyruvate yeast carboxylase (PYC2) and their parental cells, both stably producing the therapeutic glycoprotein interferon alpha 2b (IFN alpha 2b), were cultured in media deprived of glutamine but containing chosen substitutes. Among the tested substitutes, pyruvate led to the best improvement in growth (integral of viable cell density) for both cell lines in batch cultures, whereas the culture of PYC2 cells without neither glutamine nor any substitute displayed surprisingly enhanced IFN alpha 2b production. The drastic reduction in both lactate and ammonia in the cultures translated into extended high viability conditions and an increase in recombinant protein titer by up to 47% for the parental cells and the PYC2 cells. Product characterization performed by surface plasmon resonance biosensing using Sambucus nigra (SNA) lectin revealed that the increase in yield was however accompanied by a reduction in the degree of sialylation of the product. Supplementing cultures with glycosylation precursors and a cofactor were effective at counterbalancing the lack of glutamine and allowed improvement in IFN alpha 2b quality as evaluated by lectin affinity. Our study provides a strategy to reconcile protein productivity and quality and highlights the advantages of PYC2-overexpressing cells in glutamine-free conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available