4.7 Article

Pulsed Electron Deposition of nanostructured bioactive glass coatings for biomedical applications

Journal

CERAMICS INTERNATIONAL
Volume 43, Issue 17, Pages 15862-15867

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ceramint.2017.08.159

Keywords

Plasma-assisted deposition; Bioactive glasses; Nanostructured coatings; Bone implants; Atomic force microscropy; Adhesion tests

Ask authors/readers for more resources

Due to poor mechanical properties and brittleness of bioactive glasses, the deposition of bioactive glass coatings on bioinert metallic implants for bone regeneration is a promising route to combine the high bioactivity of the glassy phase with the mechanical strength of metallic substrate. The Pulsed Electron Deposition (PED) technique has been recently demonstrated to be an effective method to fabricate highly-adherent and nanostructured bioactive thin films and coatings, with fine control over film composition. In this paper, we investigated the deposition by PED of 45S5 Bioglass and of a novel CaO-rich bioactive glass, also containing potassium oxide. Composition, microstructure, surface morphology, wettability and adhesion to the titanium substrate were assessed for both as-deposited and annealed coatings. All samples exhibited a nanostructured surface morphology and high hydrophilicity, both positive features for biological applications. In particular, annealed samples exhibited increased roughness and adhesion degree to the titanium substrate compared to the as-deposited ones. The results showed in this paper suggest that bioactive glass coatings deposited by PED are promising for being further investigated as bioactive coatings for bone implants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available