4.6 Article

Quasi-biweekly oscillations of the South Asian monsoon and its co-evolution in the upper and lower troposphere

Journal

CLIMATE DYNAMICS
Volume 49, Issue 9-10, Pages 3159-3174

Publisher

SPRINGER
DOI: 10.1007/s00382-016-3503-y

Keywords

Potential vorticity; Monsoon anticyclone; South Asian monsoon; Quasi-biweekly oscillations; Tropical-midlatitude interactions; Intraseasonal variability

Funding

  1. Climate Dynamics Division of the National Science Foundation [NSF-AGS 0965610]

Ask authors/readers for more resources

The Upper Tropospheric Quasi-Biweekly Oscillation (UQBW) of the South Asian monsoon is studied using the potential vorticity field on the 370 K isentrope. The UQBW is shown to be a common occurrence in the upper troposphere during the monsoon, and its typical evolution is described. We suggest that the UQBW is a phenomenon of both the middle and tropical latitudes, owing its existence to the presence of the planetary-scale upper-tropospheric monsoon anticyclone. The UQBW is first identified as Rossby waves originating in the northern flank of the monsoon anticyclone. These Rossby waves break when reaching the Pacific Ocean, and their associated cyclonic PV anomalies move southward to the east of Asia and then westward across the Indian Ocean and Africa advected by the monsoon anticyclone. A strong correlation, or co-evolution, between the UQBW and quasi-biweekly oscillations in the lower troposphere (QBW) is also found. In particular, analysis of vertically-integrated horizontal moisture transport, 850 hPa geopotential, and outgoing long-wave radiation show that the UQBW is usually observed at the same time as, and co-evolves with, the lower tropospheric QBW over South Asia. We discuss the nature of the UQBW, and its possible physical link with the QBW.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available