4.7 Article

Environmental relevant concentrations of a chlorpyrifos commercial formulation affect two neotropical fish species, Cheirodon interruptus and Cnesterodon decemmaculatus

Journal

CHEMOSPHERE
Volume 188, Issue -, Pages 486-493

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2017.08.156

Keywords

Chlorpyrifos; Cnesterodon decemmaculatus; Cheirodon interruptus; Biomarkers

Funding

  1. National Research Council (CONICET-PIP) [112-201101-01084]
  2. Secretaria de Ciencia y Tecnica de la Universidad Nacional de Cordoba [203/14-2014-2015]

Ask authors/readers for more resources

The increase of cultivated areas together with the intensive use of pesticides have greatly contributed to impair the quality of aquatic systems along different areas of South America. The main goal of the present study was to assess the effects of a commercial formulation of chlorpyrifos at environmentally relevant concentrations on two-native fish species, Cheirodon interruptus and Cnesterodon decemmaculatus. Adult individuals were exposed during 48 h to the following concentrations: 0.084 nl/l (Ci-Cf 1) and 0.84 nl/l (Ci-CF 2) in C. interruptus (Ci) of Clorfox (CF), and 0.84 nl/l (Cd-CF 1) and 8.4 nl/l (Cd-CF 2) in C decemmaculatus (Cd). Fish behavior was evaluated through locomotor activity and space usage variables. The activity of acetylcholinesterase (AChE) in brain and muscle, catalase (CAT) and glutathione-S-transferase (GST) in brain, liver, muscle and gills, and aspartate amino-transferase (AST), alanine amino-transferase (ALT), AST/ALT ratio and alkaline phosphatase (ALP) in liver, were measured. Both locomotor activity and space usage varied between the two species studied and between CF treatments. The enzyme activities showed significant variations in CAT for C. interruptus and in CAT, GST, ACNE, AST, and AST/ALT for C. decemmaculatus under the exposure conditions. Given that both species responded to CF and the concentrations we tested are environmentally relevant, the presence of this pesticide in freshwater systems could impose a risk for populations of both native fish studied at field. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available