4.7 Article

Three-dimensional automated reporter quantification (3D-ARQ) technology enables quantitative screening in retinal organoids

Journal

DEVELOPMENT
Volume 144, Issue 20, Pages 3698-3705

Publisher

COMPANY BIOLOGISTS LTD
DOI: 10.1242/dev.146290

Keywords

Retinal organoids; Screening; Fluorescence reporter quantification; 3D-ARQ; Human

Funding

  1. National Institutes of Health [EY022631, TR000945, EY1765]
  2. Dr. Ralph and Marian Falk Medical Research Trust
  3. William & Mary Greve Special Scholar Award from Research to Prevent Blindness

Ask authors/readers for more resources

The advent of stem cell-derived retinal organoids has brought forth unprecedented opportunities for developmental and physiological studies, while presenting new therapeutic promise for retinal degenerative diseases. From a translational perspective, organoid systems provide exciting new prospects for drug discovery, offering the possibility to perform compound screening in a three-dimensional (3D) human tissue context that resembles the native histoarchitecture and to some extent recapitulates cellular interactions. However, inherent variability issues and a general lack of robust quantitative technologies for analyzing organoids on a large scale pose severe limitations for their use in translational applications. To address this need, we have developed a screening platform that enables accurate quantification of fluorescent reporters in complex human iPSC-derived retinal organoids. This platform incorporates a fluorescence microplate reader that allows xyz-dimensional detection and fine-tuned wavelength selection. We have established optimal parameters for fluorescent reporter signal detection, devised methods to compensate for organoid size variability, evaluated performance and sensitivity parameters, and validated this technology for functional applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available