4.8 Article

S100A4 Is a Biomarker and Regulator of Glioma Stem Cells That Is Critical for Mesenchymal Transition in Glioblastoma

Journal

CANCER RESEARCH
Volume 77, Issue 19, Pages 5360-5373

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-17-1294

Keywords

-

Categories

Funding

  1. American Cancer Society Research Scholar Award [118571-RSG-10-042-01-DDC]
  2. Donaldson Charitable Trust
  3. Cancer Center Core Grant [CA034196]

Ask authors/readers for more resources

Glioma stem cells (GSC) and epithelial-mesenchymal transition (EMT) are strongly associated with therapy resistance and tumor recurrence, but the underlying mechanisms are incompletely understood. Here, we show that S100A4 is a novel biomarker of GSCs. S100A4(+) cells in gliomas are enriched with cancer cells that have tumor-initiating and sphere-forming abilities, with the majority located in perivascular niches where GSCs are found. Selective ablation of S100A4-expressing cells was sufficient to block tumor growth in vitro and in vivo. We also identified S100A4 as a critical regulator of GSC self-renewal in mouse and patient-derived glioma tumorspheres. In contrast with previous reports of S100A4 as a reporter of EMT, we discovered that S100A4 is an upstream regulator of the master EMT regulators SNAIL2 and ZEB along with other mesenchymal transition regulators in glioblastoma. Overall, our results establish S100A4 as a central node in a molecular network that controls stemness and EMT in glioblastoma, suggesting S100A4 as a candidate therapeutic target.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available