4.5 Article

Novel hemagglutinin nanoparticle influenza vaccine with Matrix-M (TM) adjuvant induces hemagglutination inhibition, neutralizing, and protective responses in ferrets against homologous and drifted A(H3N2) subtypes

Journal

VACCINE
Volume 35, Issue 40, Pages 5366-5372

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.vaccine.2017.08.021

Keywords

Recombinant; Hemagglutinin; Nanoparticles; Influenza; Vaccine; Matrix-M

Funding

  1. Novavax, Inc.
  2. Novavax

Ask authors/readers for more resources

Influenza viruses frequently acquire mutations undergoing antigenic drift necessitating annual evaluation of vaccine strains. Highly conserved epitopes have been identified in the hemagglutinin (HA) head and stem regions, however, current influenza vaccines induce only limited responses to these conserved sites. Here, we describe a novel seasonal recombinant HA nanoparticle influenza vaccine (NIV) formulated with a saponin-based adjuvant, Matrix-M (TM). NIV induced hemagglutination inhibition (HAI) and microneutralizing (MN) antibodies against a broad range of influenza A(H3N2) subtypes. In a comparison of NIV against standard-dose and high-dose inactivated influenza vaccines (IIV and IIV-HD, respectively) in ferrets NIV elicited HAI and MN responses exceeding those induced by IIV-HD against homologous A (H3N2) by 7 fold, A(H1N1) by 26 fold, and B strain viruses by 2 fold. NIV also induced MN responses against all historic A/H3N2 strains tested, spanning more than a decade of viral evolution from the 2000-2017 influenza seasons whereas IIV and IIV-HD induced HAI and MN responses were largely directed against the homologous A(H3N2), A(H1N1), and B virus strains. NIV induced superior protection compared to IIV and IIV-HD in ferrets challenged with a homologous or 10-year drifted influenza A(H3N2) strain. HAI positive and HAI negative neutralizing monoclonal antibodies derived from mice immunized with NW were active against homologous and drifted influenza A(H3N2) strains. Taken together these observations suggest that NIV can induce responses to one or more highly conserved HA head and stem epitopes and result in highly neutralizing antibodies against both homologous and drift strains. (C) 2017 The Authors. Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available