4.6 Article

Structure of the triose-phosphate/phosphate translocator reveals the basis of substrate specificity

Journal

NATURE PLANTS
Volume 3, Issue 10, Pages 825-832

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41477-017-0022-8

Keywords

-

Categories

Funding

  1. Platform for Drug Discovery, Informatics and Structural Life Science
  2. Ministry of Education, Culture, Sports, Science and Technology (MEXT)
  3. JSPS KAKENHI [24227004, 25291011]
  4. FIRST program
  5. JST PRESTO
  6. [16J07405]
  7. Grants-in-Aid for Scientific Research [16H02420, 16H04710, 17H03640, 16J07405, 15J08129] Funding Source: KAKEN

Ask authors/readers for more resources

The triose-phosphate/phosphate translocator (TPT) catalyses the strict 1: 1 exchange of triose-phosphate, 3-phosphoglycerate and inorganic phosphate across the chloroplast envelope, and plays crucial roles in photosynthesis. Despite rigorous study for more than 40 years, the molecular mechanism of TPT is poorly understood because of the lack of structural information. Here we report crystal structures of TPT bound to two different substrates, 3-phosphoglycerate and inorganic phosphate, in occluded conformations. The structures reveal that TPT adopts a 10-transmembrane drug/metabolite transporter fold. Both substrates are bound within the same central pocket, where conserved lysine, arginine and tyrosine residues recognize the shared phosphate group. A structural comparison with the outward-open conformation of the bacterial drug/metabolite transporter suggests a rocker-switch motion of helix bundles, and molecular dynamics simulations support a model in which this rocker-switch motion is tightly coupled to the substrate binding, to ensure strict 1: 1 exchange. These results reveal the unique mechanism of sugar phosphate/phosphate exchange by TPT.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available