4.6 Article

Origin and mechanisms of high salinity in Hombolo Dam and groundwater in Dodoma municipality Tanzania, revealed

Journal

APPLIED WATER SCIENCE
Volume 7, Issue 6, Pages 2883-2905

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s13201-017-0569-6

Keywords

Hombolo dam; salinity; groundwater; origin; livelihood

Ask authors/readers for more resources

The Hombolo dam (HD), in central Tanzania, is a shallow reservoir characterized by high salinity that limits its use for human activities. The origin of the salinity, mechanisms of reaching and concentrating in the dam remain unclear. These were assessed using hydrogeochemical facies, water type evolutions and mapping. The source ofHDsalinity was identified to be shallow groundwater (SG) and runoff from a seasonal floodplain with NaCl-rich lithological materails, alongLittle Kinyasungwe River that feeds the dam. The NaCl-rich lithological units, about 5-7 km upstream of the dam, were highly concentrated withNaCl to the extent that the local community was commercially separating table salt from them. The physicochemical parameters from these NaCl-rich lithological materials were well represented inHDand nearby groundwater sources, which suggests active water interactions. Water type evolution and surface hydrology assessments clearly showed that SG in the salty-floodplain was influenced by evaporation (ET) and was periodically carried to the HD. Clearly; HD water had high chemical similarity with the nearby SG. This agreeswith previous studies thatHD is partly fed by the local aquifer. However, this is the first attempt at mapping its physical origin. The origin of HD salinity was further supported by the spatial distribution of electrical conductivity (EC), where very high EC (up to 21,230 mu Scm(-1)) was recorded in SG within the NaCl-rich lithological unit while water sources far away from the NaClrich materials had much lower EC values. Thus, the study disagrees with previous conclusions that HD salinity was sorely due to high dam surface ET but is primarily due to geological reasons. Comparisons of HD with a nearby Matumbulu dam (MD), another earthen dam in climatologically similar settings, reveals that MD water was less saline/ mineralised. This further shows that HD high salinity is most likely a geologic phenomenon, but local climatic factors, namely high ET, decreasing rainfall and warming trends are likely to have concentrated the salts further. Although HD is widely/ideally used for grape vine irrigation, it was clearly revealed that its prolonged usage would potentially affect the soil and grape productivity due to high salinity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available