4.8 Article

1T-Phase Transition Metal Dichalcogenides (MoS2, MoSe2, WS2, and WSe2) with Fast Heterogeneous Electron Transfer: Application on Second-Generation Enzyme-Based Biosensor

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 9, Issue 46, Pages 40697-40706

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.7b13090

Keywords

electrochemical biosensor; second-generation glucose sensor; 2D materials; tungsten dichalcogenides; chemical exfoliation

Funding

  1. Ministry of Education, Singapore [99/13]
  2. Czech Science Foundation (GACR) [16-05167S]
  3. Neuron Foundation
  4. EFRR [CZ.02.1.01/0.0/0.0/15_003/0000444]

Ask authors/readers for more resources

Two-dimensional transition metal dichalcogenides (TMDs) have been in the spotlight for their intriguing properties, including a tunable band gap and fast heterogeneous electron-transfer (HET) rate. Understandably, they are especially attractive in the field of electrochemical biosensors. In this article, HET capabilities of various TMDs (MoS2, MoSe2, WS2, and WSe2) within group VI chemically exfoliated via t-BuLi intercalation are studied and these capabilities are used in the second generation electrochemical glucose biosensor. Strikingly, tungsten dichalcogenides (WS2 and WSe2) exhibit superior HET properties compared to that of their molybdenum counterparts (MoS2 and MoSe2). When incorporated into second generation glucose biosensors, WS2 and WSe2 generated a higher electrochemical responses than that of MoS2 and MoSe2, following the same trend as expected. The commendable performance by WX2 is attributed to the dominance of 1T phase, revealed by characterization data. The developed and optimized 1T WX2-based biosensor achieved analytical requirements of selectivity, wide linear ranges, as well as low limits of detection and quantification. The outstanding electrochemical performances of WS2 and WSe2 are to be recognized, adding on to the fact that they are not decorated with any metal nanoparticles. This is imperative to showcase the real potential of two-dimensional TMDs in electrochemical biosensors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available