4.7 Article

Compensation of input delay that depends on delayed input

Journal

AUTOMATICA
Volume 85, Issue -, Pages 362-373

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.automatica.2017.07.069

Keywords

Nonlinear control; Delay systems; Predictor-feedback; Backstepping

Ask authors/readers for more resources

For nonlinear systems, we develop a PDE-based predictor-feedback control design, which compensates actuator dynamics, governed by a transport PDE with outlet boundary-value-dependent propagation velocity. Global asymptotic stability under the predictor-feedback control law is established assuming spatially uniform strictly positive transport velocity. The stability proof is based on a Lyapunov-like argument and employs an infinite-dimensional backstepping transformation that is introduced. An equivalent representation of the transport PDE/nonlinear ODE cascade via a nonlinear system with an input delay that is defined implicitly through an integral of the past input is also provided and the equivalent predictor-feedback control design for the delay system is presented. The validity of the proposed controller is illustrated applying a predictor-feedback bang-bang boundary control law to a PDE model of a production system with a queue. Consistent simulation results are provided that support the theoretical developments. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available