4.6 Article

Electrospun Zein/Gelatin Scaffold-Enhanced Cell Attachment and Growth of Human Periodontal Ligament Stem Cells

Journal

MATERIALS
Volume 10, Issue 10, Pages -

Publisher

MDPI
DOI: 10.3390/ma10101168

Keywords

zein; gelatin; electrospun; human periodontal ligament stem cells; cytocompatibility; tissue engineering

Funding

  1. Special Funds for Public Welfare Research and Capacity Building of Guangdong Province in China [2014A010105025]
  2. Natural Science Foundation of China [81530069]
  3. Guangdong Innovative Research Team program [2009010058]

Ask authors/readers for more resources

Periodontitis is a widespread dental disease affecting 10 to 15% of worldwide adult population, yet the current treatments are far from satisfactory. The human periodontal ligament stem cell is a promising potential seed cell population type in cell-based therapy and tissue regeneration, which require appropriate scaffold to provide a mimic extracellular matrix. Zein, a native protein derived from corn, has an excellent biodegradability, and therefore becomes a hotspot on research and application in the field of biomaterials. However, the high hydrophobicity of zein is unfavorable for cell adhesion and thus greatly limits its use. In this study, we fabricate co-electrospun zein/gelatin fiber scaffolds in order to take full advantages of the two natural materials and electrospun fiber structure. Zein and gelatin in four groups of different mass ratios (100:00, 100:20, 100:34, 100:50), and dissolved the mixtures in 1,1,1,3,3,3-hexafluoro-2-propanol, then produced membranes by electrospinning. The results showed that the scaffolds were smooth and homogeneous, as shown in scanning electron micrographs. The diameter of hybrid fibers was increased from 69 +/- 22 nm to 950 +/- 356 nm, with the proportion of gelatin increase. The cell affinity of zein/gelatin nanofibers was evaluated by using human periodontal ligament stem cells. The data showed that hydrophilicity and cytocompatibility of zein nanofibers were improved by blended gelatin. Taken together, our results indicated that the zein/gelatin co-electrospun fibers had sufficient mechanical properties, satisfied cytocompatibility, and can be utilized as biological scaffolds in the field of tissue regeneration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available