4.7 Article

Evaluation of multiple forcing data sets for precipitation and shortwave radiation over major land areas of China

Journal

HYDROLOGY AND EARTH SYSTEM SCIENCES
Volume 21, Issue 11, Pages 5805-5821

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/hess-21-5805-2017

Keywords

-

Funding

  1. National Basic Research Program of China [2015CB953703]
  2. National Natural Science Foundation of China [91537210, 41371328]
  3. National Key Research and Development Program of China [2016YFA0601603]
  4. Tsinghua National Laboratory for Information Science and Technology

Ask authors/readers for more resources

Precipitation and shortwave radiation play important roles in climatic, hydrological and biogeochemical cycles. Several global and regional forcing data sets currently provide historical estimates of these two variables over China, including the Global Land Data Assimilation System (GLDAS), the China Meteorological Administration (CMA) Land Data Assimilation System (CLDAS) and the China Meteorological Forcing Dataset (CMFD). The CN05.1 precipitation data set, a gridded analysis based on CMA gauge observations, also provides high-resolution historical precipitation data for China. In this study, we present an intercomparison of precipitation and shortwave radiation data from CN05.1, CMFD, CLDAS and GLDAS during 2008-2014. We also validate all four data sets against independent ground station observations. All four forcing data sets capture the spatial distribution of precipitation over major land areas of China, although CLDAS indicates smaller annual-mean precipitation amounts than CN05.1, CMFD or GLDAS. Time series of precipitation anomalies are largely consistent among the data sets, except for a sudden decrease in CMFD after August 2014. All forcing data indicate greater temporal variations relative to the mean in dry regions than in wet regions. Validation against independent precipitation observations provided by the Ministry of Water Resources (MWR) in the middle and lower reaches of the Yangtze River indicates that CLDAS provides the most realistic estimates of spatiotemporal variability in precipitation in this region. CMFD also performs well with respect to annual mean precipitation, while GLDAS fails to accurately capture much of the spatiotemporal variability and CN05.1 contains significant high biases relative to the MWR observations. Estimates of shortwave radiation from CMFD are largely consistent with station observations, while CLDAS and GLDAS greatly overestimate shortwave radiation. All three forcing data sets capture the key features of the spatial distribution, but estimates from CLDAS and GLDAS are systematically higher than those from CMFD over most of mainland China. Based on our evaluation metrics, CLDAS slightly outperforms GLDAS. CLDAS is also closer than GLDAS to CMFD with respect to temporal variations in shortwave radiation anomalies, with substantial differences among the time series. Differences in temporal variations are especially pronounced south of 34 degrees N. Our findings provide valuable guidance for a variety of stakeholders, including land-surface modelers and data providers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available