4.4 Article

Enhanced electrostatic vibrational energy harvesting using integrated opposite-charged electrets

Journal

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1361-6439/aa5e73

Keywords

electrostatic/electret; vibrational energy harvesting; sandwich-structured; opposite-charged

Ask authors/readers for more resources

This paper presents a sandwich-structured MEMS electret-based vibrational energy harvester (e-VEH) that has two opposite-charged electrets integrated into a single electrostatic device. Compared to the conventional two-plate configuration where the maximum charge can only be induced when the movable mass reaches its lowest position, the proposed harvester is capable of creating maximum charge induction at both the highest and the lowest extremes, leading to an enhanced output performance. As a proof of concept, an out-of-plane MEMS e-VEH device with an overall volume of about 0.24 cm(3) is designed, modeled, fabricated and characterized. A holistic equivalent circuit model incorporating the mechanical dynamic model and two capacitive circuits has been established to study the charge circulations. With the fabricated prototype, the experimental analysis demonstrates the superior performance of the proposed sandwiched e-VEH: the output voltage increases by 80.9% and 18.6% at an acceleration of 5 m s(-2) compared to the top electret alone and bottom electret alone configurations, respectively. The experimental results also confirm the waveform derivation with the increase of excitation, which is in good agreement with the circuit simulation results. The proposed sandwiched e-VEH topology provides an effective and convenient methodology for improving the performance of electrostatic energy harvesting devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available