4.7 Article

High-performance supercapacitors using flexible and freestanding MnOx/carbamide carbon nanofibers

Journal

APPLIED SURFACE SCIENCE
Volume 423, Issue -, Pages 210-218

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2017.06.098

Keywords

Electrospinning; MnOx/CCNF; Flexible; Supercapacitor

Funding

  1. Global Frontier Program through the Global Frontier Hybrid Interface Materials (GFHIM) [NRF-2013M3A6B1078879, NRF-2017R1A2B4005639, NRF-2016M1A2A2936760]

Ask authors/readers for more resources

We demonstrate the fabrication of a MnOx/carbamide carbon nanofiber (CCNF) composite consisting of MnO particles embedded in CCNFs as a highly flexible and freestanding electrode material for supercapacitors. A sacrificial polymer component, polymethylmethacrylate, included in the precursor solution, pyrolyzes during heating, resulting in pores in the fibers, some of which are filled by the MnO nanocrystals. Carbamide is added to control the size of the MnOx particles as well as to increase the carbon content of the composite and hence its conductivity. The X-ray diffraction and Raman spectra of the composite show that the MnO particles formed have low crystallinity. Transmission electron microscopy confirms that the MnO particles are distributed very uniformly over the CCNFs. Symmetric supercapacitors constructed using electrodes of this composite exhibit specific capacitances of 498 F.g(-1) at a scan rate of 10 mV.s(-1) and 271 F.g(-1) at a current density of 1 A.g(-1). They also exhibit excellent long-term cycling performance, retaining 93% of their initial capacity after 5000 cycles of galvanostatic charging/discharging. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available