4.6 Review

Establishing Genotype-to-Phenotype Relationships in Bacteria Causing Hospital-Acquired Pneumonia: A Prelude to the Application of Clinical Metagenomics

Journal

ANTIBIOTICS-BASEL
Volume 6, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/antibiotics6040030

Keywords

next-generation sequencing; whole-genome sequencing; hospital-acquired pneumonia; antibiotic resistance; prediction

Funding

  1. bioMerieux

Ask authors/readers for more resources

Clinical metagenomics (CMg), referred to as the application of next-generation sequencing (NGS) to clinical samples, is a promising tool for the diagnosis of hospital-acquired pneumonia (HAP). Indeed, CMg allows identifying pathogens and antibiotic resistance genes (ARGs), thereby providing the information required for the optimization of the antibiotic regimen. Hence, provided that CMg would be faster than conventional culture, the probabilistic regimen used in HAP could be tailored faster, which should lead to an expected decrease of mortality and morbidity. While the inference of the antibiotic susceptibility testing from metagenomic or even genomic data is challenging, a limited number of antibiotics are used in the probabilistic regimen of HAP (namely beta-lactams, aminoglycosides, fluoroquinolones, glycopeptides and oxazolidinones). Accordingly, based on the perspective of applying CMg to the early diagnostic of HAP, we aimed at reviewing the performances of whole genomic sequencing (WGS) of the main HAP-causing bacteria (Enterobacteriaceae, Pseudomonas aeruginosa, Acinetobacter baumannii, Stenotrophomonas maltophilia and Staphylococcus aureus) for the prediction of susceptibility to the antibiotic families advocated in the probabilistic regimen of HAP.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available