4.6 Article

Regional climate of the subtropical central Andes using high-resolution CMIP5 models-part I: past performance (1980-2005)

Journal

CLIMATE DYNAMICS
Volume 49, Issue 11-12, Pages 3937-3957

Publisher

SPRINGER
DOI: 10.1007/s00382-017-3560-x

Keywords

CMIP5 models; Model evaluation; Subtropical central Andes

Funding

  1. University of Buenos Aires [UBA-20020130200142BA]

Ask authors/readers for more resources

This study assesses the performance of 15 high resolution global climate models (GCMs) over the complex orographic region of the subtropical central Andes from available simulations of the Fifth Coupled Model Intercomparison Project (CMIP5). The simulated past climate (1980-2005) was compared against the Climate Research Unit (CRU) dataset and the ERA-Interim reanalysis, considered as reference datasets, to evaluate regional and seasonal surface temperature and precipitation, as well as sea level pressure and circulation. A good agreement was found between the simulations and the reference datasets for winter precipitation and for temperature over both seasons. Whilst all models correctly reproduce the annual cycle of precipitation, some of them overestimate winter totals. ERA-Interim does not adequately represent summer precipitation over the region, and some of the models analyzed also show the same deficiency. All models correctly reproduce the northward migration of the South Pacific subtropical high during winter, although some of them underestimate the maximum central pressure. During summer, most models fail to show the low level north-south flow parallel to the eastern foothills of the Andes, a feature known as the Low Level Jet. Further analysis of the results of the simulations led to the selection of a sub-set of five CMIP5 GCMs to construct a reduced ensemble. This reduced ensemble is a better representation than the multi-model mean of the 15 GCMs of the past climate at this region and would be recommended for future studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available