4.7 Article

A Spectroscopic Survey of the Fields of 28 Strong Gravitational Lenses: Implications for &ITH&IT0

Journal

ASTROPHYSICAL JOURNAL
Volume 850, Issue 1, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.3847/1538-4357/aa9653

Keywords

galaxies: groups: general; gravitational lensing: strong

Funding

  1. EACOA Fellowship - East Asia Core Observatories Association
  2. Technology and Research Initiative Fund (TRIF) Imaging Fellowship program
  3. NSF [AST-1211874, AST-1211385]
  4. Direct For Mathematical & Physical Scien
  5. Division Of Astronomical Sciences [1211874] Funding Source: National Science Foundation

Ask authors/readers for more resources

Strong gravitational lensing provides an independent measurement of the Hubble parameter (H-0). One remaining systematic is a bias from the additional mass due to a galaxy group at the lens redshift or along the sightline. We quantify this bias for more than 20 strong lenses that have well-sampled sightline mass distributions, focusing on the convergence kappa and shear gamma. In 23% of these fields, a lens group contributes >= 1% convergence bias; in 57%, there is a similarly significant line-of-sight group. For the nine time-delay lens systems, H-0 is overestimated by 11(-2)(+3)% on average when groups are ignored. In 67% of fields with total kappa >= 0.01, line-of-sight groups contribute greater than or similar to 2x more convergence than do lens groups, indicating that the lens group is not the only important mass. Lens environment affects the ratio of four (quad) to two (double) image systems; all seven quads have lens groups while only 3 of 10 doubles do, and the highest convergences due to lens groups are in quads. We calibrate the gamma-kappa relation: log(kappa(tot)) = (1.94 +/- 0.34)log(gamma(tot)) + (1.31 +/- 0.49) with an rms scatter of 0.34 dex. Although shear can be measured directly from lensed images, unlike convergence, it can be a poor predictor of convergence; for 19% of our fields, kappa is greater than or similar to 2 gamma. Thus, accurate cosmology using strong gravitational lenses requires precise measurement and correction for all significant structures in each lens field.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available