4.5 Article

Optimization of Battery Charging and Purchasing at Electric Vehicle Battery Swap Stations

Journal

TRANSPORTATION SCIENCE
Volume 52, Issue 5, Pages 1211-1234

Publisher

INFORMS
DOI: 10.1287/trsc.2017.0781

Keywords

battery swapping; approximate dynamic programming; lateral transshipments; stochastic optimzation; electric vehicles

Ask authors/readers for more resources

An operator of a network of battery swap stations for electric vehicles must make a long-term investment decision on the number of batteries and charging bays in the system and periodic short-term decisions on when and how many batteries to recharge. Both decisions must be made concurrently, because there exists a trade-off between the long-term investment in batteries and charging bays, and short-term expenses for operating the system. Costs for electric energy as well as demand rates for batteries are stochastic: We consider an infinite time horizon for operation of the system. We derive an optimization problem, which cannot be solved optimally in a reasonable time for real world instances. By optimally solving various small problem instances, we show the mechanics of the model and the influence of its parameters on the optimal cost. We then develop a near-optimal solution heuristic based on Monte Carlo sampling following the ideas of approximate dynamic programming for the infinite horizon dynamic program. We show that operating battery swap stations in a network where lateral transshipments are allowed can substantially decrease expected operating costs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available