4.6 Article

How nanobubbles lose stability: Effects of surfactants

Journal

APPLIED PHYSICS LETTERS
Volume 111, Issue 13, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.5000831

Keywords

-

Funding

  1. National Natural Science Foundation of China [21276007, 91434204]

Ask authors/readers for more resources

In contrast to stability theories of nanobubbles, the molecular mechanism of how nanobubbles lose stability is far from being understood. In this work, we try to interpret recent experimental observations that the addition of surfactants destabilizes nanobubbles with an unclear mechanism. Using molecular dynamics simulations, we identify two surfactant-induced molecular mechanisms for nanobubbles losing stability, either through depinning of a contact line or reducing vapor-liquid surface tension. One corresponds to the case with significant adsorption of surfactants on the substrates, which causes depinning of the nanobubble contact line and thus leads to nanobubble instability. The other stresses surfactant adsorption on the vapor-liquid interface of nanobubbles, especially for insoluble surfactants, which reduces the surface tension of the interface and leads to an irreversible liquid-to-vapor phase transition. Our finding can help improve our understanding in nanobubble stability, and the insight presented here has implications for surface nanobubbles involving with other amphiphilic molecules, such as proteins and contaminations. Published by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available