3.9 Article

The SrkA Kinase Is Part of the SakA Mitogen-Activated Protein Kinase Interactome and Regulates Stress Responses and Development in Aspergillus nidulans

Journal

EUKARYOTIC CELL
Volume 14, Issue 5, Pages 495-510

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/EC.00277-14

Keywords

-

Funding

  1. CONACYT [CB-2010-01-153256, 229044]
  2. PAPIIT-UNAM [IN207913]
  3. DFG-CONACYT Germany-Mexico Collaboration Grant from CONACYT [75306]
  4. Deutsche Forschungsgemeinschaft (DFG
  5. Mexican-German research unit) [1334]

Ask authors/readers for more resources

Fungi and many other eukaryotes use specialized mitogen-activated protein kinases (MAPK) of the Hog1/p38 family to transduce environmental stress signals. In Aspergillus nidulans, the MAPK SakA and the transcription factor AtfA are components of a central multiple stress-signaling pathway that also regulates development. Here we characterize SrkA, a putative MAPK-activated protein kinase, as a novel component of this pathway. Delta srkA and Delta sakA mutants share a derepressed sexual development phenotype. However, Delta srkA mutants are not sensitive to oxidative stress, and in fact, srkA inactivation partially suppresses the sensitivity of Delta sakA mutant conidia to H2O2, tert-butyl-hydroperoxide (t-BOOH), and menadione. In the absence of stress, SrkA shows physical interaction with nonphosphorylated SakA in the cytosol. We show that H2O2 induces a drastic change in mitochondrial morphology consistent with a fission process and the relocalization of SrkA to nuclei and mitochondria, depending on the presence of SakA. SakA-SrkA nuclear interaction is also observed during normal asexual development in dormant spores. Using SakA and SrkA S-tag pulldown and purification studies coupled to mass spectrometry, we found that SakA interacts with SrkA, the stress MAPK MpkC, the PPT1-type phosphatase AN6892, and other proteins involved in cell cycle regulation, DNA damage response, mRNA stability and protein synthesis, mitochondrial function, and other stress-related responses. We propose that oxidative stress induces DNA damage and mitochondrial fission and that SakA and SrkA mediate cell cycle arrest and regulate mitochondrial function during stress. Our results provide new insights into the mechanisms by which SakA and SrkA regulate the remodelling of cell physiology during oxidative stress and development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available