4.4 Article

Alanyl-glutamine but not glycyl-glutamine improved the proliferation of enterocytes as glutamine substitution in vitro

Journal

AMINO ACIDS
Volume 49, Issue 12, Pages 2023-2031

Publisher

SPRINGER WIEN
DOI: 10.1007/s00726-017-2460-z

Keywords

Glutamine; Dipeptide; Mitochondrial bioenergetics; Protein turnover; Enterocyte

Funding

  1. National Natural Science Foundation of China [31330075, 31372326, 31672433, 31301989, 31560640]
  2. Key Programs of frontier scientific research of the Chinese Academy of Sciences [QYZDY-SSW-SMC008]
  3. National Basic Research Program of China [2013CB127302]

Ask authors/readers for more resources

The synthetic dipeptides alanyl-glutamine (Ala-Gln) and glycyl-glutamine (Gly-Gln) are used as Gln substitution to provide energy source in the gastrointestinal tract due to their high solubility and stability. This study aimed to investigate the effects of Gln, Ala-Gln and Gly-Gln on mitochondrial respiration and protein turnover of enterocytes. Intestinal porcine epithelial cells (IPEC-J2) were cultured for 2 days in Dulbecco's modified Eagle's-F12 Ham medium (DMEM-F12) containing 2.5 mM Gln, Ala-Gln or Gly-Gln. Results from 5-ethynyl-2'-deoxyuridine incorporation and flow cytometry analysis indicated that there were no differences in proliferation between free Gln and Ala-Gln-treated cells, whereas Gly-Gln treatment inhibited the cell growth compared with Gln treatment. Significantly lower mRNA expressions of Sp1 and PepT1 were also observed in Gly-Gln-treated cells than that of Ala-Gln treatment. Ala-Gln treatment increased the basal respiration and ATP production, compared with free Gln and Gly-Gln treatments. There were no differences in protein turnover between free Gln and Ala-Gln-treated cells, but Gly-Gln treatment reduced protein synthesis and increased protein degradation. Ala-Gln treatment stimulated mTOR activation whereas Gly-Gln decreased mTOR phosphorylation and increased the UB protein expression compared with free Gln treatment. These results indicate that Ala-Gln has the very similar functional profile to free Gln in porcine enterocytes in vitro and can be substituted Gln as energy and protein sources in the gastrointestinal tract.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available