4.7 Article

Parameter estimation method that directly compares gravitational wave observations to numerical relativity

Journal

PHYSICAL REVIEW D
Volume 96, Issue 10, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.96.104041

Keywords

-

Funding

  1. NSF [PHY-1505629, AST-1664362, PHY-1607520, ACI-1550436, AST-1516150, ACI-1516125, PHY-0722703, DMS-0820923, AST-1028087, PHY-1229173, ACI-0832606, ACI-1238993, OCI-1515969, OCI-0725070, PHY-1307489, PHY-1606522, PHY-1606654, AST-1333129, PHY-1429873, ACI-1550461, PHY-1505824]
  2. XSEDE allocation [TG-PHY060027N]
  3. NSERC of Canada
  4. Ontario Early Researcher Awards Program
  5. Canada Research Chairs Program
  6. Canadian Institute for Advanced Research
  7. Research Corporation for Science Advancement, CSU Fullerton
  8. GPC supercomputer at the SciNet HPC Consortium
  9. Canada Foundation for Innovation (CFI) under the auspices of Compute Canada
  10. Government of Ontario, Ontario Research Fund (ORF)-Research Excellence
  11. University of Toronto
  12. CFI, Ministere de l'Economie, de l'Innovation et des Exportations du Quebec (MEIE)
  13. RMGA
  14. Fonds de recherche du Quebec-Nature et Technologies (FRQ-NT)
  15. Direct For Mathematical & Physical Scien
  16. Division Of Physics [1606522, 1606654, 1505824] Funding Source: National Science Foundation
  17. Division Of Physics
  18. Direct For Mathematical & Physical Scien [1429873, 1404569] Funding Source: National Science Foundation
  19. Office of Advanced Cyberinfrastructure (OAC)
  20. Direct For Computer & Info Scie & Enginr [1550436, 1550461] Funding Source: National Science Foundation
  21. Office of Advanced Cyberinfrastructure (OAC)
  22. Direct For Computer & Info Scie & Enginr [1516125] Funding Source: National Science Foundation

Ask authors/readers for more resources

We present and assess a Bayesian method to interpret gravitational wave signals from binary black holes. Our method directly compares gravitational wave data to numerical relativity (NR) simulations. In this study, we present a detailed investigation of the systematic and statistical parameter estimation errors of this method. This procedure bypasses approximations used in semianalytical models for compact binary coalescence. In this work, we use the full posterior parameter distribution for only generic nonprecessing binaries, drawing inferences away from the set of NR simulations used, via interpolation of a single scalar quantity (the marginalized log likelihood, ln L) evaluated by comparing data to nonprecessing binary black hole simulations. We also compare the data to generic simulations, and discuss the effectiveness of this procedure for generic sources. We specifically assess the impact of higher order modes, repeating our interpretation with both l <= 2 as well as l <= 3 harmonic modes. Using the l <= 3 higher modes, we gain more information from the signal and can better constrain the parameters of the gravitational wave signal. We assess and quantify several sources of systematic error that our procedure could introduce, including simulation resolution and duration; most are negligible. We show through examples that our method can recover the parameters for equal mass, zero spin, GW150914-like, and unequal mass, precessing spin sources. Our study of this new parameter estimation method demonstrates that we can quantify and understand the systematic and statistical error. This method allows us to use higher order modes from numerical relativity simulations to better constrain the black hole binary parameters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available