4.5 Article

COMPACT LIE GROUPS: EULER CONSTRUCTIONS AND GENERALIZED DYSON CONJECTURE

Journal

TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY
Volume 369, Issue 7, Pages 4709-4724

Publisher

AMER MATHEMATICAL SOC
DOI: 10.1090/tran/6795

Keywords

Lie groups; Euler parameterization; Macdonald conjecture; Dyson integral

Categories

Ask authors/readers for more resources

A generalized Euler parameterization of a compact Lie group is a way for parameterizing the group starting from a maximal Lie subgroup, which allows a simple characterization of the range of parameters. In the present paper we consider the class of all compact connected Lie groups. We present a general method for realizing their generalized Euler parameterization starting from any symmetrically embedded Lie group. Our construction is based on a detailed analysis of the geometry of these groups. As a byproduct this gives rise to an interesting connection with certain Dyson integrals. In particular, we obtain a geometry based proof of a Macdonald conjecture regarding the Dyson integrals correspondent to the root systems associated to all irreducible symmetric spaces. As an application of our general method we explicitly parameterize all groups of the class of simple, simply connected compact Lie groups. We provide a table giving all necessary ingredients for all such Euler parameterizations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available