4.8 Article

Dynamics and Morphology of Nanoparticle-Linked Polymers Elucidated by Nuclear Magnetic Resonance

Journal

ANALYTICAL CHEMISTRY
Volume 89, Issue 22, Pages 12399-12407

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.7b03489

Keywords

-

Funding

  1. National Science Foundation Center [CHE-1503408]
  2. National Institutes of Health [S10OD012245]
  3. Direct For Mathematical & Physical Scien
  4. Division Of Chemistry [1503408] Funding Source: National Science Foundation

Ask authors/readers for more resources

Nanoparticles are frequently modified with polymer layers to control their physical and chemical properties, but little is understood about the morphology and dynamics of these polymer layers. We report here an NMR-based investigation of a model polymer-modified nanoparticle, using multiple NMR techniques including H-1 NMR, diffusion-ordered spectroscopy (DOSY), total correlation spectroscopy (TOCSY), and T-2 relaxometry to characterize the dynamics of the nanoparticle-polymer interface. Using 5 nm detonation nanodiamond covalently linked to poly(allylamine) hydrochloride as a model system, we demonstrate the use of NMR to distinguish between free and bound polymer and to characterize the degree to which the segments of the nanoparticle-wrapping polymer are mobile (loops and tails) versus immobile (trains). Our results show that the polymer-wrapped nanoparticle contains a large fraction of highly mobile polymer segments, implying that the polymer extends well into solution away from the nanoparticle surface. Flexible, distal polymer segments are likely to be more accessible to extended objects such as cell membranes, compared with polymer segments that are in close proximity to the nanoparticle surface. Thus, these flexible segments may be particularly important in controlling subsequent interactions of the nanoparticles. While reported here for a model system, the methodology used demonstrates how NMR methods can provide important insights into the structure and dynamics at nanoparticle-polymer interfaces, leading to new perspectives on the behavior and interactions of polymer-functionalized nanoparticles in aqueous systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available