4.8 Article

Deformation Drives Alignment of Nanofibers in Framework for Inducing Anisotropic Cellulose Hydrogels with High Toughness

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 9, Issue 49, Pages 43154-43162

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.7b14900

Keywords

cellulose hydrogel; hierarchical structure; alignment; birefringence; mechanoresponsive behavior

Funding

  1. Natural Science Foundation of China [21334005]
  2. National Natural Science Foundation of China [21620102004]
  3. Hubei Province Science Foundation for Youths [2015CFB499]

Ask authors/readers for more resources

Deformation-driven alignment of macromolecules or nanofibers leading to anisotropy is a challenge in functional soft materials. Here, tough cellulose hydrogels that exhibited deformation-induced anisotropy are fabricated by reacting cellulose with a small amount of epichlorohydrin (EPI) in LiOH/urea solution and subsequent treating with dilute acid. The loosely cross-linked network that was obtained via chemical cross-linking of cellulose with EPI as a large framework maintained the elasticity of hydrogels, whereas nanofibers produced by the acid treatment formed physical cross-linked networks through hydrogen bonds which could efficiently dissipated mechanical energy. Meanwhile, the nanofibers could further aggregate to form submicrobundles and participate in the formation of frameworks during the acid treatment. Under deformation, the nanofibers and submicrobundles in the physical networks synchronize easily to align with the large framework, generating the rapidly responsive birefringence behaviors with highly stable colors. Thus, the cellulose hydrogels possessing sensitively mechano-responsive behavior could be utilized as a dynamic light switch and a soft sensor to accurately detect small external force, respectively. This work opens a novel pathway to construct tough and mechanoresponsive hydrogels via a green conversion of natural polysaccharide.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available