4.8 Article

Construction of Plasmonic Ag and Nitrogen-Doped Graphene Quantum Dots Codecorated Ultrathin Graphitic Carbon Nitride Nanosheet Composites with Enhanced Photocatalytic Activity: Full-Spectrum Response Ability and Mechanism Insight

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 9, Issue 49, Pages 42816-42828

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.7b14541

Keywords

surface plasmon resonance; upconversion effect; nitrogen-doped graphene quantum dot; tetracycline; full-spectrum light

Funding

  1. National Natural Science Foundation of China [51579096, 51521006, 51222805, 51508175, 51409024]
  2. National Natural Science Foundation of China
  3. National Program for Support of Top-Notch Young Professionals of China
  4. Program for New Century Excellent Talents in University from Ministry of Education of China [NCET-11-0129]
  5. Hunan Province Innovation Foundation for Postgraduate [CX2015B095]

Ask authors/readers for more resources

The full utilization of solar energy has attracted great attention in the photocatalysis and environmental pollutant control. In this study, the local surface plasmon resonance effect of Ag nanoparticles (Ag NPs) with the upconversion property of nitrogen-doped graphene quantum dots (N-GQDs) was first combined for the formation of ternary Ag/N-GQDs/g-C3N4 nanocomposites. The prepared material presents enhanced full-spectrum light response ability, even in near-infrared (NIR) light. The experiment results disclosed that the 0.5% N-GQDs and 2.0% Ag NPs co-doped g-C3N4 show the highest photocatalytic activity, achieving 92.8 and 31.3% removal efficiency under full-spectrum light and NIR light irradiation, respectively, which was three-fold than that of pristine g-C3N4. The boosted photocatalytic activity can be attributed to the synergistic effect among the g-C3N4, N-GQDs, and Ag NPs. The g-C3N4 nanosheets can serve as the reaction matrix and support for the dispersion of N-GQDs and Ag NPs, inhibiting their agglomeration. The existence of Ag NPs and N-GQDs can promote the light absorption and transfer ability, leading generation photoinduced charges. Simultaneously, N-GQDs and Ag NPs can efficiently transfer and reserve electrons, which can accelerate the photoinduced electrons' migration, inhibiting the recombination. The comprehensive effect of the reasons mentioned above resulted in the unique photocatalytic activity of the prepared Ag/N-GQDs/g-C3N4 nanocomposites. This study provides a new strategy for the formation of highly efficient photocatalysts with broad-spectrum light response ability and the potential for realistic wastewater pollution control.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available