4.7 Article

Open burning of rice, corn and wheat straws: primary emissions, photochemical aging, and secondary organic aerosol formation

Journal

ATMOSPHERIC CHEMISTRY AND PHYSICS
Volume 17, Issue 24, Pages 14821-14839

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-17-14821-2017

Keywords

-

Funding

  1. Chinese Academy of Sciences [XDB05010200]
  2. National Natural Science Foundation of China [41530641/41571130031/41673116/41503105]
  3. National Key Research and Development Program [2016YFC0202204]
  4. Guangzhou Science Technology and Innovation Commission [201505231532347]

Ask authors/readers for more resources

Agricultural residues are among the most abundant biomass burned globally, especially in China. However, there is little information on primary emissions and photochemical evolution of agricultural residue burning. In this study, indoor chamber experiments were conducted to investigate primary emissions from open burning of rice, corn and wheat straws and their photochemical aging as well. Emission factors of NOx, NH3, SO2, 67 non-methane hydrocarbons (NMHCs), particulate matter (PM), organic aerosol (OA) and black carbon (BC) under ambient dilution conditions were determined. Olefins accounted for > 50% of the total speciated NMHCs emission (2.47 to 5.04 g kg(-1)), indicating high ozone formation potential of straw burning emissions. Emission factors of PM (3.73 to 6.36 g kg(-1)) and primary organic carbon (POC, 2.05 to 4.11 gC kg(-1)), measured at dilution ratios of 1300 to 4000, were lower than those reported in previous studies at low dilution ratios, probably due to the evaporation of semi-volatile organic compounds under high dilution conditions. After photochemical aging with an OH exposure range of (1.97-4.97) x 10(10) molecule cm(-3) s in the chamber, large amounts of secondary organic aerosol (SOA) were produced with OA mass enhancement ratios (the mass ratio of total OA to primary OA) of 2.4-7.6. The 20 known precursors could only explain 5.0-27.3% of the observed SOA mass, suggesting that the major precursors of SOA formed from open straw burning remain unidentified. Aerosol mass spectrometry (AMS) signaled that the aged OA contained less hydrocarbons but more oxygen-and nitrogen-containing compounds than primary OA, and carbon oxidation state (OSc) calculated with AMS resolved O / C and H / C ratios increased linearly (p < 0.001) with OH exposure with quite similar slopes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available