4.6 Article

Ultrafine carbon particles promote rotenone-induced dopamine neuronal loss through activating microglial NADPH oxidase

Journal

TOXICOLOGY AND APPLIED PHARMACOLOGY
Volume 322, Issue -, Pages 51-59

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.taap.2017.03.005

Keywords

Ultrafine carbon black; Particulate matter; Rotenone; Parkinson's disease; NADPH oxidase; Neuroinflammation

Funding

  1. National Natural Science Foundation of China [21577004]
  2. Beijing Municipal Natural Science Foundation [7162104]
  3. Outstanding Young Foundation of Peking University [BMU20130340]

Ask authors/readers for more resources

Background: Atmospheric ultrafine particles (UFPs) and pesticide rotenone were considered as potential environmental risk factors for Parkinson's disease (PD). However, whether and how UFPs alone and in combination with rotenone affect the pathogenesis of PD remains largely unknown. Methods: Ultrafine carbon black (ufCB, a surrogate of UFPs) and rotenone were used individually or in combination to determine their roles in chronic dopaminergic (DA) loss in neuron-glia, and neuron-enriched, mix-glia cultures. Immunochemistry using antibody against tyrosine hydroxylase was performed to detect DA neuronal loss. Measurement of extracellular superoxide and intracellular reactive oxygen species (ROS) were performed to examine activation of NADPH oxidase. Genetic deletion and pharmacological inhibition of NADPH oxidase and MAC-1 receptor in microglia were employed to examine their role in DA neuronal loss triggered by ufCB and rotenone. Results: In rodent midbrain neuron-glia cultures, ufCB and rotenone alone caused neuronal death in a dose-dependent manner. In particularly, ufCB at doses of 50 and 100 mu g/cm(2) induced significant loss of DA neurons. More importantly, nontoxic doses of ufCB (10 mu g/cm(2)) and rotenone (2 nM) induced synergistic toxicity to DA neurons. Microglial activation was essential in this process. Furthermore, superoxide production from microglial NADPH oxidase was critical in ufCB/rotenone-induced neurotoxicity. Studies in mix-glia cultures showed that ufCB treatment activated microglial NADPH oxidase to induce superoxide production. Firstly, ufCB enhanced the expression of NADPH oxidase subunits (gp91(phox), p47(phox) and p40(phox)); secondly, ufCB was recognized by microglial surface MAC-1 receptor and consequently promoted rotenone-induced p47(phox) and p67(phox) translocation assembling active NADPH oxidase. Conclusion: ufCB and rotenone worked in synergy to activate NADPH oxidase in microglia, leading to oxidative damage to DA neurons. Our findings delineated the potential role of ultrafine particles alone and in combination with pesticide rotenone in the pathogenesis of PD. (C) 2017 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available