4.6 Article

Seasonal distribution of phytoplankton assemblages and nutrient-enriched bioassays as indicators of nutrient limitation of phytoplankton growth in Gwangyang Bay, Korea

Journal

ESTUARINE COASTAL AND SHELF SCIENCE
Volume 163, Issue -, Pages 265-278

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ecss.2014.12.035

Keywords

phytoplankton community; Gwangyang Bay; nutrient limitation; bioassay; Eucampia zodiacus; Skeletonema genus

Funding

  1. KIOST [PE99191]
  2. KIMST [PM57480]

Ask authors/readers for more resources

To assess the effect of nutrient limitation on phytoplankton growth, and its influence on seasonal variation in phytoplanlcton community structure, we investigated abiotic and biotic factors in surface and bottom waters at 20 stations in inner and offshore areas of Gwangyang Bay, Korea. Algal bioassay experiments were also conducted using surface water, to assess the effects of nutrient addition on the phytoplankton assemblages. The fate of major nutrients in the bay was strongly dependent on the discharge of freshwater from the Seomjin River. River flow during the rainy season provides a high nitrogen (N) influx, pushing the system toward stoichiometric phosphorus (P) limitation. However, at some times during the rainy season there was insufficient N to maintain phytoplankton growth because it was rapidly consumed through nutrient uptake by phytoplankton under stratified environmental conditions. Diatoms made a relatively large contribution to total phytoplankton biomass. The dominant diatoms, particularly in winter and summer, were Skeletonema marinoi-dohmii complex and Skeletonema tropicum, respectively, while Eucampia zodiacus and the cryptophyte Cryptomonas spp. dominated in spring and autumn, respectively, comprising more than 75% of the community at most stations. In the bioassay experiments the phytoplankton biomass increased by 30-600% in the +N (added nitrogen) and +NP (added nitrogen and phosphorus) treatments relative to the control and the +P (added phosphorus) treatments, indicating that phytoplankton growth can respond rapidly to pulsed nitrate loading events. Based on the algal bioassay and the field survey, the abrupt input of high nutrient levels following rainfall stimulated the growth of diatom assemblages including the Skeletonema genus. Our results demonstrate that the growth of centric diatoms was enhanced by inputs of N and Si, and that the concentrations of these nutrients may be among the most important factors controlling phytoplankton growth in Gwangyang Bay. (c) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available