4.5 Article

Neurodevelopment and Thyroid Hormone Synthesis Inhibition in the Rat: Quantitative Understanding Within the Adverse Outcome Pathway Framework

Journal

TOXICOLOGICAL SCIENCES
Volume 160, Issue 1, Pages 57-73

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/toxsci/kfx163

Keywords

thyroperoxidase; thyroid hormone; brain development; qAOP

Categories

Funding

  1. US Environmental Protection Agency

Ask authors/readers for more resources

Adequate levels of thyroid hormone (TH) are needed for proper brain development, deficiencies may lead to adverse neurologic outcomes in humans and animal models. Environmental chemicals have been linked to TH disruption, yet the relationship between developmental exposures and decline in serum TH resulting in neurodevelopmental impairment is poorly understood. The present study developed a quantitative adverse outcome pathway where serum thyroxin (T4) reduction following inhibition of thyroperoxidase in the thyroid gland are described and related to deficits in fetal brain TH and the development of a brain malformation, cortical heterotopia. Pregnant rats were exposed to 6-propylthiouracil (PTU 0, 0.1, 0.5, 1, 2, or 3 parts per million [ppm]) from gestational days 6-20, sequentially increasing PTU concentrations in maternal thyroid gland and serum as well as in fetal serum. Dams exposed to 0.5 ppm PTU and higher exhibited dose-dependent decreases in thyroidal T4. Serum T4 levels in the dam were significantly decreased with exposure to 2 and 3 ppm PTU. In the fetus, T4 decrements were first observed at a lower dose of 0.5 ppm PTU. Based on these data, fetal brain T4 levels were estimated from published literature sources, and quantitatively linked to increases in the size of the heterotopia present in the brains of offspring. These data show the potential of in vivo assessments and computational descriptions of biologic responses to predict the development of this structural brain malformation and use of quantitative adverse outcome pathway approach to evaluate brain deficits that may result from exposure to other TH disruptors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available