4.2 Article

Atelocollagen-based Hydrogels Crosslinked with Oxidised Polysaccharides as Cell Encapsulation Matrix for Engineered Bioactive Stromal Tissue

Journal

TISSUE ENGINEERING AND REGENERATIVE MEDICINE
Volume 14, Issue 5, Pages 539-556

Publisher

KOREAN TISSUE ENGINEERING REGENERATIVE MEDICINE SOC
DOI: 10.1007/s13770-017-0063-0

Keywords

Bioactive engineered stroma; Cell encapsulation; Oxidised polysaccharides

Ask authors/readers for more resources

Tissue stroma is responsible for extracellular matrix (ECM) formation and secretion of factors that coordinate the behaviour of the surrounding cells through the microenvironment created. It's inability to spontaneously regenerate makes it a good candidate for research studies such as testing various tissue engineered products capable of replacing the stroma in order to assure normal tissue regeneration and function. In this study, a bioactive stroma was obtained considering two main components: 1) the artificial ECM formed using atelocollagen-oxidized polysaccharides hydrogels in which the polysaccharide compound (oxidised gellan or pullulan) has the role of crosslinker and 2) encapsulated stromal cells (dermal fibroblasts, ovarian theca-interstitial and granulosa cells). The cell-hosting ability of the hydrogels is demonstrated by a good diffusion of globular proteins (albumin) while the fibrillar morphology proves to be optimal for cell adhesion. These structural properties and cytocompatibility of the components maintain good cell viability and cell encapsulation for more than 12 days. Nevertheless, the results indicate some differences favouring the gellan crosslinked hydrogels. Ovarian stromal cells functionality was maintained as indicated by hormone secretion, confirming cell-cell signalling in encapsulated and co-culture conditions. In vivo implantation shows the regenerative potential of the cell-populated hydrogels as they are integrated into the natural tissue. The possibility of cryopreserving the hydrogel-cell system, while maintaining both cell viability and hydrogel structural integrity underlines the potential of these ready-to-use hydrogels as bioactive stroma for multipurpose tissue regeneration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available