4.4 Article

Optimization of sputtered zirconium thin films as an infrared reflector for use in spectrally-selective solar absorbers

Journal

THIN SOLID FILMS
Volume 627, Issue -, Pages 17-25

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.tsf.2017.02.055

Keywords

Thermal emittance; DC sputter deposition; Zirconium thin film; Spectrally solar selective coatings

Funding

  1. Ministry of New & Renewable Energy (MNRE), India [15/40/2010-11/ST]

Ask authors/readers for more resources

Thermal emittance is an important parameter for the solar thermal collectors as thermal radiative losses from the solar thermal collector increase to the fourth power of temperature. This should be minimized using infrared reflectors in designing spectrally selective absorber coatings for solar thermal applications. The thermal emittance of zirconium (Zr) film as an infrared reflector has been investigated for the use in the spectrally selective absorber. The Zr metallic films are deposited using DC magnetron sputtering process on stainless steel and glass substrates and the deposition process has been optimized to achieve the minimum thermal emittance. The effect of structural, microstructural and surface morphological properties of Zr films is investigated on the emittance of fabricated structures. The X-ray diffraction analysis revealed that the Zr film coatings consist of both cubic and hexagonal Zr crystallographic phase. The optimized deposition time and temperature showed 0.12 and 0.14 emittance values for Zr film coatings on stainless steel and glass substrates respectively. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available