4.4 Article

Identification of a Human Airway Epithelial Cell Subpopulation with Altered Biophysical, Molecular, and Metastatic Properties

Journal

CANCER PREVENTION RESEARCH
Volume 10, Issue 9, Pages 514-524

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1940-6207.CAPR-16-0335

Keywords

-

Categories

Funding

  1. NIH/NCI [T32-CA009120-36]
  2. NCI [U01CA152751, 1U01CA196408]
  3. Department of Defense Congressionally Directed Medical Research Programs [LC130767]
  4. Department of Veteran Affairs [2I01BX000359-05A1]
  5. National Center for Advancing Translational Science UCLA CTSI [UL1TR000124]
  6. University of California Tobacco Related Disease Research Program (TRDRP) [22DT-0005, 20KT-055]
  7. NCI Lung Cancer SPORE [P50CA70907]
  8. Packard Foundation
  9. CDMRP [LC130767, 672227] Funding Source: Federal RePORTER

Ask authors/readers for more resources

Lung cancers are documented to have remarkable intratumoral genetic heterogeneity. However, little is known about the heterogeneity of biophysical properties, such as cell motility, and its relationship to early disease pathogenesis and micrometastatic dissemination. In this study, we identified and selected a subpopulation of highly migratory premalignant airway epithelial cells that were observed to migrate through microscale constrictions at up to 100-fold the rate of the unselected immortalized epithelial cell lines. This enhanced migratory capacity was found to be Rac1-dependent and heritable, as evidenced by maintenance of the phenotype through multiple cell divisions continuing more than 8 weeks after selection. The morphology of this lung epithelial subpopulation was characterized by increased cell protrusion intensity. In a murine model of micrometastatic seeding and pulmonary colonization, the motility-selected premalignant cells exhibit both enhanced survival in short-term assays and enhanced outgrowth of premalignant lesions in longer-term assays, thus overcoming important aspects of metastatic inefficiency. Overall, our findings indicate that among immortalized premalignant airway epithelial cell lines, subpopulations with heritable motility-related biophysical properties exist, and these may explain micrometastatic seeding occurring early in the pathogenesis of lung cancer. Understanding, targeting, and preventing these critical biophysical traits and their underlying molecular mechanisms may provide a new approach to prevent metastatic behavior. (C) 2017 AACR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available