4.8 Article

Graphene/PbS-Quantum Dots/Graphene Sandwich Structures Enabled by Laser Shock Imprinting for High Performance Photodetectors

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 9, Issue 51, Pages 44715-44723

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.7b14468

Keywords

microfabrication; photodetector; quantum dot; graphene; response time; photoresponse rate; photoresponse gain

Funding

  1. United States National Science Foundation through CMMI [1538360]
  2. Purdue SMART Consortium
  3. Office of Naval research through the DURIP program
  4. Directorate For Engineering
  5. Div Of Civil, Mechanical, & Manufact Inn [1538360] Funding Source: National Science Foundation

Ask authors/readers for more resources

Quantum dots (QDs) integrated 2-dimensional (2D) materials have great potential for photodetector applications due to the excellent light absorption of QDs and ultrafast carrier transportation of 2D materials. However, there is a main issue that prevents efficient carrier transportation and ideal performance of photodetectors: the high interfacial resistance between 2D materials and QDs due to the bad contacts between 2D/0D interface, which makes sluggish carrier transfer from QDs to 2D materials. Here, a sandwich structure (graphene/PbS-QDs/graphene) with seamless 2D/0D contact was fabricated by laser shock imprinting, which opto-mechanically tunes the morphology of 2D materials to perfectly wrap on 0D materials and efficiently collect carriers from the PbS-QDs. It is found that this seamless integrated 2D/0D/2D structure significantly enhanced the carrier transmission, photoresponse gain (by 2x), response time (by 20x), and photoresponse speed (by 13x). The response time (similar to 30 ms) and I-p/ I-d ratio (13.2) are both over 10x better than the reported hybrid graphene photodetectors. This is due to the tight contact and efficient gate-modulated carrier injection from PbS-QDs to graphene. The gate voltage dictates whether electrons or holes dominate the carrier injection from PbS-QDs to graphene.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available