4.7 Article

Endogenous fibrinolysis facilitates clot retraction in vivo

Journal

BLOOD
Volume 130, Issue 23, Pages 2453-2462

Publisher

AMER SOC HEMATOLOGY
DOI: 10.1182/blood-2017-06-789032

Keywords

-

Categories

Funding

  1. Australian National Health and Medical Research Council (NHMRC) [APP1044214]
  2. University of Sydney
  3. NHMRC

Ask authors/readers for more resources

Clot retraction refers to the process whereby activated platelets transduce contractile forces onto the fibrin network of a thrombus, which over time increases clot density and decreases clot size. This process is considered important for promoting clot stability and maintaining blood vessel patency. Insights into the mechanisms regulating clot retraction at sites of vascular injury have been hampered by a paucity of in vivo experimental models. By pairing localized vascular injury with thrombin microinjection in the mesenteric circulation of mice, we have demonstrated that the fibrin network of thrombi progressively compacts over a 2-hour period. This was a genuine retraction process, as treating thrombi with blebbistatin to inhibit myosin IIa-mediated platelet contractility prevented shrinkage of the fibrin network. Real-time confocal analysis of fibrinolysis after recombinant tissue-type plasminogen activator (tPA) administration revealed that incomplete proteolysis of fibrin polymers markedly facilitated clot retraction. Similarly, inhibiting endogenous fibrinolysis with tranexamic acid reduced retraction of fibrin polymers in vivo. In vitro clot retraction experiments indicated that subthreshold doses of tPA facilitated clot retraction through a plasmin-dependent mechanism. These effects correlated with changes in the elastic modulus of fibrin clots. These findings define the endogenous fibrinolytic system as an important regulator of clot retraction, and show that promoting clot retraction is a novel and complementary means by which fibrinolytic enzymes can reduce thrombus size.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available