4.2 Article

Assessment of basis sets for density functional theory-based calculations of core-electron spectroscopies

Journal

THEORETICAL CHEMISTRY ACCOUNTS
Volume 137, Issue 1, Pages -

Publisher

SPRINGER
DOI: 10.1007/s00214-017-2181-0

Keywords

Basis sets; Core-electron; X-ray spectroscopy

Funding

  1. Leverhulme Trust [RPG-2016-103]

Ask authors/readers for more resources

The performance of Gaussian basis sets for density functional theory-based calculations of core-electron spectroscopies is assessed. The convergence of core-electron binding energies and core-excitation energies using a range of basis sets including split-valence, correlation-consistent, polarisation-consistent and individual gauge for localised orbitals basis sets is studied. For self-consistent field calculations of core-electron binding energies and core-excitation energies of first-row elements, relatively small basis sets can accurately reproduce the values of much larger basis sets, with the IGLO basis sets performing particularly well. Calculations for the K-edge of second-row elements are more challenging, and of the smaller basis sets, pcSseg-2 has the best performance. For the correlation-consistent basis sets, inclusion of core-valence correlation functions is important, with the cc-pCVTZ basis set giving accurate results. Time-dependent density functional theory-based calculations of core-excitation energies show less sensitivity to the basis set with relatively small basis sets, such as pcSseg-1 or pcSseg-2, reproducing the values for much larger basis sets accurately. In contrast, time-dependent density functional theory calculations of X-ray emission energies are highly dependent on the basis set, but the IGLO-II, IGLO-III and pcSseg-2 basis sets provide a good level of accuracy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available