4.7 Article

Convective Velocity Suppression via the Enhancement of the Subadiabatic Layer: Role of the Effective Prandtl Number

Journal

ASTROPHYSICAL JOURNAL
Volume 851, Issue 2, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.3847/1538-4357/aa9b7f

Keywords

convection; Sun: helioseismology; Sun: interior

Funding

  1. JSPS KAKENHI [15H03640]
  2. Leading Graduate Course for Frontiers of Mathematical Sciences and Physics (FMSP) of the University of Tokyo
  3. MEXT/JSPS KAKENHI [JP16K17655, JP16H01169]
  4. Grants-in-Aid for Scientific Research [16K17655, 16H01169] Funding Source: KAKEN

Ask authors/readers for more resources

It has recently been recognized that the convective velocities achieved in current solar convection simulations might be overestimated. The newly revealed effects of the prevailing small-scale magnetic field within the convection zone may offer possible solutions to this problem. The small-scale magnetic fields can reduce the convective amplitude of small-scale motions through the Lorentz-force feedback, which concurrently inhibits the turbulent mixing of entropy between upflows and downflows. As a result, the effective Prandtl number may exceed unity inside the solar convection zone. In this paper, we propose and numerically confirm a possible suppression mechanism of convective velocity in the effectively high-Prandtl number regime. If the effective horizontal thermal diffusivity decreases (the Prandtl number accordingly increases), the subadiabatic layer which is formed near the base of the convection zone by continuous depositions of low entropy transported by adiabatically downflowing plumes is enhanced and extended. The global convective amplitude in the high-Prandtl thermal convection is thus reduced, especially in the lower part of the convection zone via the change in the mean entropy profile, which becomes more subadiabatic near the base and less superadiabatic in the bulk.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available