4.6 Article

Analysis of a parametrically driven exchange-type gate and a two-photon excitation gate between superconducting qubits

Journal

PHYSICAL REVIEW A
Volume 96, Issue 6, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.96.062323

Keywords

-

Funding

  1. IARPA LogiQ program [W911NF-16-1-0114-FE]
  2. ARO [W911NF-14-1-0124]

Ask authors/readers for more resources

A current bottleneck for quantum computation is the realization of high-fidelity two-qubit quantum operations between two or more quantum bits in arrays of coupled qubits. Gates based on parametrically driven tunable couplers offer a convenient method to entangle multiple qubits by selectively activating different interaction terms in the effective Hamiltonian. Here, we theoretically and experimentally study a superconducting qubit setup with two transmon qubits connected via a capacitively coupled tunable bus. We develop a time-dependent Schrieffer-Wolff transformation and derive analytic expressions for exchange-interaction gates swapping excitations between the qubits (iSWAP) and for two-photon gates creating and annihilating simultaneous two-qubit excitations (bSWAP). We find that the bSWAP gate is generally slower than the more commonly used iSWAP gate, but features favorable scalability properties with less severe frequency-crowding effects, which typically degrade the fidelity in multiqubit setups. Our theoretical results are backed by experimental measurements as well as exact numerical simulations including the effects of higher transmon levels and dissipation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available